Fuzzy Neural Network Models For Multispectral Image Analysis

نویسندگان

  • ARUN KULKARNI
  • SARA MCCASLIN
چکیده

Fuzzy neural networks (FNNs) provide a new approach for classification of multispectral data and to extract and optimize classification rules. Neural networks deal with issues on a numeric level, whereas fuzzy logic deals with them on a semantic or linguistic level. FNNs synthesize fuzzy logic and neural networks. Recently, there has been growing interest in the research community not only to understand how FNNs arrive at particular decisions but how to decode information stored in the form of connection strengths in the network. In this paper, we propose fuzzy neural network models for classification of pixels in multispectral images and to extract fuzzy classification rules. During the training phase, the connection strengths are updated. After training, classification rules are extracted by backtracking along the weighted paths through the FNN. The extracted rules are then optimized using a fuzzy associative memory (FAM) bank. The data mining system described above is useful in many practical applications such as mapping, monitoring and managing our planet’s resources and health, climate change impacts and assessments, environmental change detection and military reconnaissance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Neural Network Models for Supervised Classification: Multispectral Image Analysis

It has been well established that neural networks provide a reasonable and powerful alternative to conventional classifiers. During the past few years there has been a large and energetic upswing in research efforts aimed at synthesizing fuzzy logic with neural networks. This combination of fuzzy logic and neural networks seems natural because two approaches generally attack the design of “inte...

متن کامل

Hyperspectral image classification using an unsupervised neuro-fuzzy system

An unsupervised neuro-fuzzy system, Gaussian fuzzy self-organizing map (GFSOM), is proposed for hyperspectral image classification. This algorithm operates by integrating an unsupervised neural network with a Gaussian function-based fuzzy system. We also explore the potential for hyperspectral image analysis of three other artificial intelligence (AI)-based unsupervised techniques popular for m...

متن کامل

Classification of Multispectral Images Based on a Fuzzy-Possibilistic Neural Network

In this paper, a new Hopfield-model net based on fuzzy possibilistic reasoning is proposed for the classification of multispectral images. The main purpose is to modify the Hopfield network embedded with fuzzy possibilistic -means (FPCM) method to construct a classification system named fuzzy-possibilistic Hopfield net (FPHN). The classification system is a paradigm for the implementation of fu...

متن کامل

Classification of multispectral images through a rough-fuzzy neural network

Shao-Han Liu Jzau-Sheng Lin, MEMBER SPIE National Chin-Yi Institute of Technology Department of Electronic Engineering No. 35, Lane 215, Sec. 1, Chung-Shan Rd Taiping, Taichung, Taiwan E-mail: [email protected] Abstract. A new fuzzy Hopfield-model net based on rough-set reasoning is proposed for the classification of multispectral images. The main purpose is to embed a rough-set learning...

متن کامل

Segmentation of multispectral magnetic resonance image using penalized fuzzy competitive learning network.

Segmentation (tissue classification) of the medical images obtained from Magnetic resonance (MR) images is a primary step in most applications of computer vision to medical image analysis. This paper describes a penalized fuzzy competitive learning network designed to segment multispectral MR spin echo images. The proposed approach is a new unsupervised and winner-takes-all scheme based on a ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006